110,266 research outputs found

    Flocking Regimes in a Simple Lattice Model

    Get PDF
    We study a one-dimensional lattice flocking model incorporating all three of the flocking criteria proposed by Reynolds [Computer Graphics vol.21 4 (1987)]: alignment, centring and separation. The model generalises that introduced by O. J. O' Loan and M. R. Evans [J. Phys. A. vol. 32 L99 (1999)]. We motivate the dynamical rules by microscopic sampling considerations. The model exhibits various flocking regimes: the alternating flock, the homogeneous flock and dipole structures. We investigate these regimes numerically and within a continuum mean-field theory.Comment: 24 pages 7 figure

    Commuting charges and symmetric spaces

    Get PDF
    Every classical sigma-model with target space a compact symmetric space G/HG/H (with GG classical) is shown to possess infinitely many local, commuting, conserved charges which can be written in closed form. The spins of these charges run over a characteristic set of values, playing the role of exponents of G/HG/H, and repeating modulo an integer hh which plays the role of a Coxeter number.Comment: LaTeX, 16 pages; v2: footnote adde

    Spacetime Supersymmetry in a nontrivial NS-NS Superstring Background

    Get PDF
    In this paper we consider superstring propagation in a nontrivial NS-NS background. We deform the world sheet stress tensor and supercurrent with an infinitesimal B_{\mu\nu} field. We construct the gauge-covariant super-Poincare generators in this background and show that the B_{\mu\nu} field spontaneously breaks spacetime supersymmetry. We find that the gauge-covariant spacetime momenta cease to commute with each other and with the spacetime supercharges. We construct a set of "magnetic" super-Poincare generators that are conserved for constant field strength H_{\mu\nu\lambda}, and show that these generators obey a "magnetic" extension of the ordinary supersymmetry algebra.Comment: 13 pages, Latex. Published versio

    Criticality and Condensation in a Non-Conserving Zero Range Process

    Get PDF
    The Zero-Range Process, in which particles hop between sites on a lattice under conserving dynamics, is a prototypical model for studying real-space condensation. Within this model the system is critical only at the transition point. Here we consider a non-conserving Zero-Range Process which is shown to exhibit generic critical phases which exist in a range of creation and annihilation parameters. The model also exhibits phases characterised by mesocondensates each of which contains a subextensive number of particles. A detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi

    Conserved Charges and Supersymmetry in Principal Chiral Models

    Full text link
    We report on investigations of local (and non-local) charges in bosonic and supersymmetric principal chiral models in 1+1 dimensions. In the bosonic PCM there is a classically conserved local charge for each symmetric invariant tensor of the underlying group. These all commute with the non-local Yangian charges. The algebra of the local charges amongst themselves is rather more subtle. We give a universal formula for infinite sets of mutually commuting local charges with spins equal to the exponents of the underlying classical algebra modulo its Coxeter number. Many of these results extend to the supersymmetric PCM, but with local conserved charges associated with antisymmetric invariants in the Lie algebra. We comment briefly on the quantum conservation of local charges in both the bosonic and super PCMs.Comment: 18 pages, LaTeX. Revised and up-dated version based on conference talks by JME and NJ

    Bizarre thoughts, magical ideations, and voices from the unconscious: Exploring issues of anomalous experience

    Get PDF
    This project was initially concerned with the clinical interpretations of ‘bizarre’ or ‘magical’ ideations (i.e., statements considered to have little or no validity in our predominant western culture). The first study explored clinical assessment issues of who determines the validity of expressed beliefs and what kinds of criteria such decisions are based on in the mental health field. The present study examined a particular type of magical ideation, an auditory phenomenon involving claims that forward spoken conversation contains hidden backwards speech embedded in the vocal sounds. Thirty-two participants were invited to listen to various audio samples of the alleged phenomenon and provide interpretations of what was heard. Participants were assigned to four groups, each differing in the level of pre-emptive information. A comparative measure revealed that priming and suggestion could not be dismissed as alternative explanations of the reported effects. Clinical and social implications will be discussed

    Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel

    Get PDF
    We present a density-functional study of a binary phase-separating mixture of soft core particles immersed in a random matrix of quenched soft core particles of larger size. This is a model for a binary polymer mixture immersed in a crosslinked rigid polymer network. Using the replica `trick' for quenched-annealed mixtures we derive an explicit density functional theory that treats the quenched species on the level of its one-body density distribution. The relation to a set of effective external potentials acting on the annealed components is discussed. We relate matrix-induced condensation in bulk to the behaviour of the mixture around a single large particle. The interfacial properties of the binary mixture at a surface of the quenched matrix display a rich interplay between capillary condensation inside the bulk matrix and wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.

    Rules for transition rates in nonequilibrium steady states

    Full text link
    Just as transition rates in a canonical ensemble must respect the principle of detailed balance, constraints exist on transition rates in driven steady states. I derive those constraints, by maximum information-entropy inference, and apply them to the steady states of driven diffusion and a sheared lattice fluid. The resulting ensemble can potentially explain nonequilibrium phase behaviour and, for steady shear, gives rise to stress-mediated long-range interactions.Comment: 4 pages. To appear in Physical Review Letter

    Dynamics of a disordered, driven zero range process in one dimension

    Get PDF
    We study a driven zero range process which models a closed system of attractive particles that hop with site-dependent rates and whose steady state shows a condensation transition with increasing density. We characterise the dynamical properties of the mass fluctuations in the steady state in one dimension both analytically and numerically and show that the transport properties are anomalous in certain regions of the density-disorder plane. We also determine the form of the scaling function which describes the growth of the condensate as a function of time, starting from a uniform density distribution.Comment: Revtex4, 5 pages including 2 figures; Revised version; To appear in Phys. Rev. Let
    corecore